
Abstract. An overview is given on recent advances of
density functional theory (DFT) as applied to the
calculation of nuclear magnetic resonance (NMR)
chemical shifts and electron spin resonance (ESR)
g-tensors. This is a new research area that has seen
tremendous progress and success recently; we try to
present some of these developments. DFT accounts for
correlation e�ects e�ciently. Therefore, it is the only
®rst-principle method that can handle NMR calcula-
tions on large systems like transition-metal complexes.
Relativistic e�ects become important for heavier element
compounds; here we show how they can be accounted
for. The ESR g-tensor is related conceptually to the
NMR shielding, and results of g-tensor calculations are
presented. DFT has been very successful in its applica-
tion to magnetic properties, for metal complexes in
particular. However, there are still certain shortcomings
and limitations, e.g., in the exchange-correlation func-
tional, that are discussed as well.
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1 Introduction

The application of density functional theory (DFT) to
nuclear magnetic resonance (NMR) and electron spin
resonance (ESR) spectroscopies is a very new subject.
For instance, a 1993 book on calculations of NMR
shieldings [1] that summarized the state of the art at the
time does not really mention DFT at all (except for a
brief, ``philosophical'' discussion [2] about its possible
merits). During the last ®ve years, DFT-based NMR
calculations have seen a rapid development that is
perhaps best described with the word ``explosion''.
Indeed, in the short-time span since the publication of

the book [1], the method has already entered the
standard repertoire of quantum chemistry [3]. The
theoretical description of NMR chemical shifts based
on the more traditional ab initio techniques has seen a
tremendous development as well, and both comprehen-
sive and technical [4] as well as more general reviews
[5±12] are available. In the present overview, we will
exclusively concentrate on DFT calculations of the
NMR shielding (chemical shift) and the ESR g-tensor.
Further, we intend to focus on aspects that are peculiar
to DFT or are connected to our own work. With
``peculiar'' we mean both areas of remarkable success as
well as aspects that surface only in DFT applications ±
contributions of the current density are an example of
the second category. We hope to illustrate the remark-
able scope of applications for which DFT is well suited.
Indeed, DFT is currently the only ®rst-principle method
for the important ®eld of NMR in (transition) metal
complexes [13]. At the same time, we want to show areas
that need further development.

The earliest DFT calculations of NMR chemical shifts
were done some 10 years ago. These calculations [14±16]
were not at the point of practical applicability ± mainly
due to the use of very small basis sets and of an inap-
propriate approximation to the exchange-correlation
(XC) functional. Modern applications of DFT to the
calculation of NMR chemical shifts have been pioneered
by Malkin et al. [17±20] with their DFT-IGLO (indi-
vidual gauge for localized orbitals) method and by
Schreckenbach and Ziegler [21±25] who used the gauge
including atomic orbitals (GIAO) approach. A number
of other implementations, mostly based on the GIAO
method, have been presented since [26±29]. One impor-
tant feature of DFT [30±34] is the relative ease with which
correlation e�ects can be included, thus allowing appli-
cations to large systems, e.g., metal complexes. DFT-
NMR calculations on metal complexes include the work
of Kaupp et al. [13, 35±43], Schreckenbach et al. [44],
Ruiz-Morales et al. [45±48], Ehlers et al. [49], BuÈ hl
et al. [50±56], de Dios [57], Wagener and Frenking [58],
Chan et al. [59±61], and Godbout and Old®eld [62].
Kaupp et al. [13] have reviewed computational NMRCorrespondence to: G. Schreckenbach
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studies on transition-metal complexes. Another, equally
important feature is the inclusion of relativistic e�ects
that has, so far, been achieved for DFT only. (One ex-
ception is the ab initio based work of Ballard et al. [63],
Nakatsuji et al. [64±66], and Takashima et al. [67]. These
authors do not, however, incorporate gauge corrections
into their NMR formulations, but instead attempt to use
more complete basis sets to deal with the ``gauge prob-
lem'' of magnetic properties [6, 9], nor do they include
correlation e�ects.) Relativistic e�ects become important
for any chemical feature of heavy element compounds
[68], and NMR and ESR are no exception. Kaupp et al.
[35, 36] included scalar relativistic e�ects in DFT calcu-
lations of the chemical shift by employing relativistic
e�ective core potentials (ECP). In this way, the chemical
shift of light ligands can be calculated quite successfully
while the NMR of the heavy nucleus proper remains
inaccessible. They were further able to calculate spin-
orbit e�ects by using ®nite perturbation theory [69±71].
Schreckenbach and Ziegler [24, 25] used a Pauli-type [72]
relativistic Hamiltonian and the frozen-core approxi-
mation [22]. Their method allows for the determination
of the chemical shift both at the ligand nuclei and at the
heavy center proper, thus making the important ®eld of
multinuclear NMR [73] accessible to theoretical studies. An
extension to include spin-orbit e�ects is in progress [74].

The equivalent of the chemical shift in ESR spec-
troscopy is the electronic g-tensor [75]. Compared with
recent progress for the shielding, the calculation of the
g-tensor from modern ®rst-principle quantum mechanics
is still in its infancy. It has been pioneered by Lushington
and Grein [76±79] in the ab initio ®eld, and by Schrec-
kenbach and Ziegler [25, 80] based on DFT.

This overview is organized as follows. In Sect. 2, some
aspects of the general theory for DFT and magnetic ef-
fects will be summarized. This will be followed by a more
detailed discussion of requirements for the XC functional
± a problem that is, on the one hand, peculiar to DFT
methods but which has, on the other hand, not yet been
solved completely. We shall discuss brie¯y what is known
to date (Sect. 3). Necessarily, Sect. 3 is a more technical
chapter, and a reader can easily skip over it. In Sect. 4, we
will present the frozen-core approximation. It required
disproving the common misconception that the chemical
shift is a property of core molecular orbitals (MOs). We
shall show that it is instead determined by the core tail of
valence MOs. As an application, we will cite results of
77Se chemical shift calculations [44]. We will discuss DFT
in comparison to various ab initio approaches, using the
77Se nucleus as a representative test case. The frozen-core
approximation forms a basis for the inclusion of rela-
tivistic e�ects; NMR shielding calculations with relativity
will be discussed in Sect. 5. We will utilize 17O NMR in
transition-metal-oxo complexes MO4

n± [24, 35, 43] and
125Te NMR [47] as representative examples. Section 6 is
dedicated to ESR g-tensors. We conclude with a brief
summary and outlook (Sect. 7).

2 General theory and theory of NMR shielding

We do not intend to present the complete theory of
either DFT or ESR/NMR calculations at this point, as it

would go far beyond the scope of the current overview.
Some aspects thereof are, however, appropriate as they
facilitate the subsequent discussions. Good introduc-
tions to the theory of DFT can be found in textbooks
[30], original papers [81, 82], and in reviews [31±34]. The
general theory of NMR and ESR calculations has been
discussed in reviews [5±7, 9, 10] and in numerous
original papers (e.g., [17±28, 80, 83]). Finally, a good
general introduction to various second-order e�ects can
be found, e.g., in McWeeny's textbook [84]. We will use
atomic units in the following, unless stated otherwise.
They are de®ned by �h � m � e � 4pe0 � 1; the speed of
light, c, becomes c � 137:03599 [85].

Properties like the NMR shielding and the ESR
g-tensor can be expressed as static second derivatives of
the total energy with respect to two perturbations [84].
Thus, two derivatives w.r.t. the magnetic ®eld give the
magnetizability (magnetic susceptibility) [86]; magnetic
®eld and nuclear magnetic moment, NMR shielding;
magnetic ®eld and electronic spin, ESR g-tensor; two
magnetic moments at di�erent nuclei, NMR spin-spin
coupling constants [87, 88], and so on. This approach
yields a convenient general theoretical framework for the
treatment of various, seemingly very di�erent properties.
We will not elaborate further at this point, although the
approach has been widely employed. The interested
reader may refer to the literature [20, 21, 25, 80, 83].

DFT is based on an exact expression for the total
energy E of an n-electron system [81]

E �
Xn

i
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In Eq. (1), q �Pn
i W�i Wi is the electronic density of the

system, the Wif g form a set of n orthonormal one-
electron functions, VN is the external (nuclear) potential,
and ~p is the momentum operator. Hence, the ®rst
integral represents the kinetic and potential energy of a
model system with the same density but without
electron-electron interaction. The second term is the
(Coulomb) interaction of the electron density with itself.
EXC, the XC energy, and E proper are functionals of the
density. The exact functional form for EXC is unknown
(it is, in fact, de®ned through Eq. (1) [34]), and the
evaluation of various approximations is at the center of
any application of DFT. We will discuss XC functionals
in Sect. 3. From Eq. (1), the Kohn-Sham (KS) equations
are usually derived [30, 82]:

hKSWi � eiWi ; �2a�

hKS � p2

2
� VKS � p2

2
� VN �

Z
d~r2

q�~r2�
j~r1 ÿ~r2j � VXC :

�2b�
The XC potential VXC is the functional derivative of the
XC energy EXC with respect to the density, q [30]. The
expressions in Eqs. (1) and (2) can be extended to open-
shell systems [30], a case that is relevant for ESR (Sect.
6), or to include relativistic e�ects [89±95] (Sect. 5).
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We will now introduce another extension, namely the
inclusion of magnetic ®elds. This is, of course, central to
the properties in this overview. The magnetic ®eld, ~B, is
most conveniently introduced by means of the so-called
minimal coupling [84]

~p ÿ!substitute
~p �~A=c �3�

where ~A is the vector potential of the ®eld. This is,
however, not the whole story in DFT. Rather, the XC
energy EXC becomes a functional of the relativistic four-
current density which translates in non-relativistic
theory to the electron density, q, and the current density,
~j [96±99],

EXC q� � ÿ!substitute
EXC q;~j

� �
: �4�

While it is already di�cult to ®nd a suitable model for
the (®eld-free) XC functional EXC[q], no acceptable
model for the additional current dependency (Eq. 4) has
been found to date (Sect. 3).

Another fundamental di�culty that surfaces in any
treatment of magnetic ®elds, be it in DFT or otherwise,
is the so-called gauge problem. Its origin, implications,
and possible remedies have been discussed in detail
elsewhere [1, 5±7, 9], and we will only mention it here.
For any given magnetic ®eld, there is considerable
freedom in the choice of gauge for the vector potential
[84]. In particular, the actual vector potential depends on
the (arbitrary) coordinate origin. Further, the vector
potential, rather than the observable, the magnetic ®eld,
enters the quantum mechanical expressions through the
minimal coupling of Eq. (3). Any expectation value,
including NMR/ESR properties, can only depend on the
values of observable quantities, and the gauge depen-
dence should vanish exactly. This is, indeed, the case for
exact solutions of, e.g., the KS equations (Eq. 2) where
large (in®nite) basis sets are used. For approximate so-
lutions with smaller (®nite) basis sets there is, however, a
strong dependence on the choice of gauge [6]. Possibly
the best solution to the gauge problem is to employ ®eld-
dependent GIAOs as basis functions [83, 100, 101]:

va
~B;~r
ÿ � � exp ÿ i

2c
~B�~Ra
ÿ � �~r� �

va�~r� �5�

where va�~r� is the usual ®eld-free basis function (atomic
orbital, AO) that is centered at position ~Ra and va

~B;~r
ÿ �

is the corresponding GIAO. The ®eld-dependent pre-
factor (Eq. 5) ensures that only di�erences of position
vectors appear in expectation values. This eliminates any
origin-dependence, even for approximate MOs and ®nite
basis sets. The equivalence of the GIAO and the simpler
``common gauge'' approaches to the NMR shielding has
been shown for the complete basis set limit [25].
Attaching a ®eld-dependent phase factor to individual
AOs (Eq. 5) has been compared to ``nucleus-attached''
basis functions in geometry optimizations [83]. Moving
the basis functions along with the atomic centers is
general practice in quantum mechanics. Instead of the
GIAO approach, it is also possible to assign similar
exponential pre-factors to other entities, e.g., to localized
MOs. This is the idea of the IGLO approach [7, 102,

103]. Certain integrals are easier to evaluate analytically
in IGLO methods than in GIAO schemes. This di�culty
has been resolved recently, either by techniques that
were borrowed from geometry optimization procedures
[83] or by employing numerical integration [21, 25]. In
comparing IGLO and GIAO results, it has been shown
that GIAO calculations converge faster with the basis-
set size [60, 83, 104, 105], and we can conclude that the
GIAO approach is probably the best method available
for magnetic properties. From the GIAO formulation of
Eq. (5), we can derive working equations for the NMR
shielding tensor, ~~r. The absolute shielding r is related to
the more familiar chemical shift d as follows:

d � rref ÿ r �6�
where rref is the absolute shielding of the reference
compound (e.g., tetramethylsilane, TMS, for 1H, 13C,
and 29Si NMR). Note the opposite sign between d and r.
The GIAO shielding tensor is given in DFT as [21, 25]:

~~r � ~~rp � ~~rd �7�
where ~~r has been split up into its diamagnetic and
paramagnetic parts. This separation is in general not
unique, because only the total shielding is an observable
quantity. However, it has been de®ned uniquely for the
GIAO method [5], and we obtain the st tensor compo-
nent
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In Eqs. (8) and (9), the following notation is used: the
MO Yi with occupation ni has been expanded into the
set of 2M AOs vb

� 	
with expansion coe�cients dbi

� 	
,~rN

is the electronic position operator relative to the nuclear
magnetic moment, and the operator h01t is de®ned as

h01t �
i
c
~rN

r3N
�~p

� �
t

: �10�

It follows from Eq. (8) that the diamagnetic shielding
depends on the unperturbed, zero-order electron density
only, as it is diagonal in the KS orbitals. However, the
paramagnetic shielding (Eq. 9) is due to the magnetic
density matrix, i.e., the density (matrix) under the
in¯uence of the magnetic ®eld [22]. This density is taken
to ®rst order in the ®eld only, and it is expanded into the
occupied and virtual zero-order MOs, giving the follow-
ing shielding contributions:

rp;ocÿocst �
Xocc
i;j

niS
1;s
ij Wijh01t jWj

 � �11�

and
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rp;ocÿvirst � 2
Xocc

i

ni

Xvir
a

u1;sai Wijh01t jWa

 �
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The second term of Eq. (8) and the ®rst term in Eq. (9)
are numerically insigni®cant in most cases, and will not
be discussed here. How to calculate the ®rst-order
occupied-occupied and occupied-virtual coe�cients S1;sij
and u1;sai has been discussed in detail in the literature
[21±25, 106]. The GIAO approach lends itself readily to
an analysis of the calculated shieldings, in terms of the
occupied and virtual MOs of the molecule (Eqs. 11, 12)
[21, 45±49]. This analysis constitutes a major advantage
of the GIAO method; it is intrinsically impossible for
other methods like IGLO-based schemes [7, 37, 38].

3 Experience with XC functionals and current DFT

Existing XC functionals can be roughly divided into
three groups, local density approximations (LDAs)
[107], generalized gradient approximations (GGAs)
[108±111], and hybrid functionals that incorporate part
of the exact Hartree-Fock (HF) exchange [34, 112]. In
addition, e�orts have been made [18±20, 26, 29] to model
the current dependency in the XC functional [96±99],
Eq. (4). To start with the latter, Lee et al. [26] have
presented results of GIAO shielding calculations using
the functional of Vignale and Rasolt [98]. Calculated
GGA results with and without the additional current
functional terms are given in Table 1. This table [26]
shows that the contributions from the current density
are small. They are certainly not su�cient to bring, e.g.,
the calculated 19F shielding in F2 close to experiment.
Two opposite conclusions are possible. Either the
current contributions are not very important at all, or
the employed approximate local current density func-
tional [98] is completely insu�cient. Becke has proposed
a gradient-corrected current-density functional [99] but
no results are available yet. Malkin has, in a di�erent
way, pursued the second avenue by proposing an ad hoc,
empirical correction to the paramagnetic shielding (Eqs.
9±12) to model the current contributions to the NMR
shielding [18±20]. While this ``coupled sum-over-states
density functional perturbation theory (SOS-DFPT)''

approach is quite successful (e.g., the 17O shielding in the
ozone, terminal oxygen, is )1290, )1429, )1230 ppm
from experiments, ``uncoupled'' DFT, and ``coupled''
DFT, respectively [19]), it lacks, to a certain degree, a
theoretical justi®cation (other than the mentioned suc-
cess in some applications) [26, 28]. Hence, it does not
necessarily allow conclusions about the importance of
the current XC terms. Olsson and Cremer [29] have
implemented Malkin's method, but without using an
auxiliary ®t basis for the Coulomb and XC integrals of
Eq. (1). (The density ®t basis used by Malkin et al. [17±
20] includes only s, p, and d functions.) It is interesting to
note that they obtain shielding values which are up to
16 ppm smaller than those of Malkin et al. [18±20], with
an increasing tendency for increasing numbers of
electrons, and they suggest modifying Malkin's empir-
ical correction term. We can conclude that the discussion
about current DFT is all but settled.

To return to the (density-only) XC functionals, the
general consensus is that the simple LDA is insu�cient
for chemical shifts [17±21, 26±28]. The di�erences be-
tween various GGAs seem to be minor; no general trend
has emerged. Hybrid functionals have also been tested.
They seem to be slightly more accurate than the GGAs
for ®rst-row compounds [27]. Kaupp et al. [43], in their
study of 17O NMR in transition metal complexes MO4

n),
found that hybrid functionals were inferior to GGAs in
this example. BuÈ hl applied hybrid DFT to the calcula-
tion of 57Fe and 103Rh chemical shifts [52], with quite a
dramatic e�ect, e.g., for 57Fe, by correlating computed
with experimental chemical shifts, he obtained linear
regression lines with slopes of 0.65 (GGA) and 0.97
(hybrid), respectively, i.e., the hybrid functional is
clearly superior in these cases. An extreme example is the
57Fe shift in ferrocene (657 ppm, GGA; 1525 ppm, hy-
brid; 1532 ppm, experiment). The reason for these e�ects
is not entirely clear. Test calculations [115], using GGAs
[108, 109] and a moderate basis set, show that the 57Fe
NMR in ferrocene is determined by Fe-based MOs,
namely the highest occupied molecular orbital (HOMO)
(e2
00; essentially Fe dx2 ) y2, dxy), HOMO-1 (aij Fe dx

2),
and lowest unoccupied molecular orbital (LUMO) (e1

0;
Fe dxz, dyz). The dominating MO couplings, Eq. (9),
include the HOMO-1 to LUMO and, to a lesser degree,

Table 1. Current density con-
tributions in the exchange-cor-
relation (XC) functional (cf. Eq.
4) to calculated absolute shiel-
dings in a few small molecules.
All numbers are cited from Lee
et al. [26]

Molecule/nucleus Absolute shielding (ppm)

Calculated Experiment

Without current
terms

Including current
terms

HF 1H 29.82 29.85 28.5 � 0.2
19F 403.97 405.05 410 � 6

CO 13C )15.35 )20.21 3 � 0.9
17O )77.14 )83.66 )42.3 � 17.2a

N2
14N )84.82 )90.43 )61.6 � 0.2

F2
19F )271.70 )280.92 )232.8

H2O
17O 317.86 316.64 344.0 � 17.2a

CH4
13C 184.33 182.92 198.7

a It has recently been proposed [113], based on very accurate calculations, to correct the experimental
17O absolute shielding scale [114] towards the lower error bar
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the HOMO to LUMO transitions. We conclude, with
the words of Kaupp et al. [43], that ``the search for a
`universal' functional is still a challenge.''

4 Frozen-core approximation: is the NMR chemical shift
a core property?

It is a common assumption that the NMR chemical shift
is a property of the core electronic density near the
NMR active nucleus. The fact that the nuclear spin
interacts with the electronic movement around the
nucleus N, and that this interaction is inversely propor-
tional to r2N (Eq. 10) is the basis for this assumption. In
their attempt to use a relativistic Pauli-type Hamiltonian
(Sect. 5) Schreckenbach and Ziegler have proposed
calculating NMR shieldings using the frozen-core ap-
proximation [22]. This method would never work if the
above assumption was true, because all core MOs are
taken from atomic calculations, kept frozen in subse-
quent molecular calculations, and excluded from the
summation over occupied MOs in Eqs. (11) and (12).
Hence, the core electronic density is explicitly excluded
from contributing to chemical shifts in any way other
than through its constant atomic (diamagnetic) contri-
bution (Eq. 8); it is not allowed to add to molecular
e�ects in the chemical shift, by coupling with virtual
MOs. The valence MOs are, however, orthogonalized
against all core MOs; this ensures their correct asymp-
totic behavior near the nucleus. (Contrast this with the
usual ECP methods [116, 117]: there, the respective
valence MOs (pseudo-orbitals) are chosen such that they
possess the wrong asymptotic behavior near the nucleus,
by smoothing away the core wiggles.) The technical
details of the frozen-core approximation have been
discussed elsewhere [22, 25]. Schreckenbach and Ziegler
[22] were able to conclude that it is a useful tool for
shielding calculations ± if the valence space is increased
to contain at least the ns; np; �nÿ 1�p; �nÿ 1�d shells

where n is the number of the given period in the periodic
table of elements. This is illustrated for a few small
molecules in Table 2, where we list the terms in the
paramagnetic shielding (Eq. 9) that would be neglected
for di�erent core levels. Again, a more detailed analysis
has been given elsewhere [22]. It follows clearly that the
relative chemical shift is a valence property, and not a
core property. More precisely, it is mostly determined by
the core tail of the valence orbitals, due to the mentioned
rÿ2N dependence (Eq. 10).

So far, we have discussed the frozen-core approxi-
mation rather formally. We will change gear somewhat,
and turn to ``real'' applications. The DFT-GIAO
scheme, including the frozen-core approximation, has
been applied to investigate 77Se NMR in a broad range
of compounds [44]. The 77Se nucleus has been chosen for
several reasons. First, relativistic e�ects (Sect. 5) are not
yet relevant for 77Se chemical shifts. Second, a wealth of
experimental data is available [118]. Third, there are also
a number of high-level computational studies in the lit-
erature [19, 119±121], and this allowed for a detailed
evaluation of the DFT-GIAO approach. Finally, an
experimental absolute shielding scale has been proposed
[122], again allowing for a rigorous test of theoretical
methods. To start with the latter, the 77Se experimental
absolute shielding scale turns out to be not particularly
useful for test purposes. This is because it contains an
estimated correction of 300 ppm for the relativistic
contraction of the core electronic density, cf. Sect. 5.
Consequently, all (non-relativistic) theoretical results are
too small by about 300 ppm. We assume the relativistic
correction to be much smaller than 300 ppm. Indeed,
non-relativistic and relativistic calculations of the
shielding in a neutral, spherically averaged Se atom (Se:
2p core, double f core/triple f valence basis [44]; BP86
XC functional [108, 109]) yield 2997 and 3070 ppm,
respectively, resulting in a relativistic correction of
73 ppm. Consequently, we propose correcting the
experimental absolute shielding scale [122], by using

Table 2. Frozen-core approximation: neglected terms in the paramagnetic part of the absolute shielding, as obtained from all-electron
calculations [22] (values in ppm)

Molecule/nucleus Absolute shielding Frozen-core level

Total Paramagnetic
part (Eq. 8)

Neglected termsa

experiment calculated occ-occb occ-virc Total

C*O 3.0 � 1.2; 1.0 )9.1 )264.0 1s �10)3 )0.03 )0.03
Benzene (C) 57.2 52.6 )196.9 C: 1s �10)3 )0.01 )0.01
OCS* 843 774.5 )279.0 C, O: 1s; S: 2s �10)3 0.1 0.1

S: 2p 4.4 4.0 8.4
Cr*O4

2) )2,384 )4,187 O: 1s, Cr: 2s �0.1 �0.01 �0.1
Cr: 2p 6.2 18.2 24.4
Cr: 3p 58.4 49.8 108.2

Te*F6 2,256 )3,096 F: 1s, Te: 2p )0.9 4.4 3.5
Te: 3p 9.8 10.3 22.1
Te: 3d 10.4 15.2 25.6
Te: 4p 14.6 14.2 28.8
Te: 4d 425.1 )63.2 361.9

a Obtained from all electron calculations
b Core-core contributions to the occupied-occupied part of the paramagnetic shielding (cf. Eq. 11)
c Core-virtual contributions to the (leading) occupied-virtual part of the paramagnetic shielding (cf. Eq. 12)
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a value of 70±75 ppm (instead of 300 ppm) for the
relativistic correction.

Let us now return to the 77Se chemical shifts. Results
from several methods, including DFT [44], HF [119,
120], second-order Mùller-Plesset perturbation theory
(MP2) [119, 120] and coupled-cluster singles-doubles
(CCSD) [121] approaches are given in Table 3. The
chemical shift of the reference compound, (CH3)2Se, has
been set to zero, and has been omitted from the table.
The calculated 77Se chemical shifts span a range of about
2800 ppm which includes almost the complete known
experimental range [118]. Further, they cover a wide
spectrum of bonding situations. Experimental gas-phase
shifts are available for H2Se, (CH3)SeH, CSe2, and SeF6
[118, 123]. Gas-phase data are desirable since such
measurements come closest to the model situation un-
derlying theory, isolated molecules without external in-
teractions. (Gas-to-liquid shifts can be large indeed: e.g.,
119 ppm for H2Se, Table 3.) We note from Table 3 that
the DFT-GIAO method predicts the 77Se chemical shifts
of these four compounds with higher accuracy than the
GIAO-MP2 scheme; average errors between experiment
and theory amount to 50 (DFT) and 65 ppm (MP2). The
inferior performance of MP2 is due to its failure for the
highly correlated CSe2, and MP2 is more accurate than
DFT for the remaining three molecules. CCSD results
are available for H2Se and CSe2. Errors are 10 and
38 ppm, respectively, making the GIAO-CCSD method
superior to all other schemes mentioned. (The same is
true when the individual tensor components of the
shielding tensors are considered [44].) The small sample
size prohibits a more detailed conclusion, and a larger
set of data would have to be included for a more com-
prehensive judgment of the various methods.

So far, we have only discussed a few compounds.
Considering also the rest of Table 3, we see that DFT
performs well throughout. The same cannot be said
about the ab initio methods. Both HF and MP2 fail for
highly correlated molecules like CSe2, and, in particular,
for the cyclic cations Se4

2+ and Se3N2
2+. Further, highly

correlated ab initio methods that are known to give very
accurate shieldings, like CCSD [121] (or even CCSD(T)
[124]), are already beyond their limit for Se4

2+; they are
too expensive computationally to be applicable to this
ion. This illustrates a major advantage of DFT-based
shielding calculations. While it has been disputed
whether DFT is more accurate than MP2 for shieldings
[12, 27±29, 44, 125±127], it is obvious that DFT can give
a consistent picture, over a whole range of di�erent
bonding situations and, as we will see in the next section,
throughout the whole periodic system. And this can be
achieved at a very modest computational cost!

5 Relativistic NMR calculations

Taking only molecules at a given geometry into account
(i.e., not considering the well-known relativistic bond
contraction [68, 91]), there are three major mechanisms
in which relativity in¯uences NMR shieldings. First,
relativity contracts the inner-core shells (s and p). This
leads to a contraction of the core electronic density
which in turn yields a large increase in the diamagnetic
shielding, as can be seen from Eq. (8). Since this is a core
e�ect, it cancels out in relative chemical shifts (Eq. 6).
Second, valence MOs are in¯uenced by relativity as well,
since they have to be orthogonal to the compact core
MOs. Thus, s- and p-type orbitals are typically con-

Table 3. Calculated and experimental 77Se chemical shifts [44]. The experimental data refer to solution (s) or neat liquid (l), unless otherwise
noted (g is for gas phase)

Molecule Experimental
77Se chemical shifts (ppm)a

Calculated 77Se chemical shifts (ppm)

DFT-GIAOb IGLO-HFc GIAO-HFc GIAO-MP2c GIAO-CCSDd

H2Se )345 (g), )226 (s) )425 )226 )270 )362 )335
(CH3)SeH )155 (g), )116 (s) )169 )118 )130 )180
CH3CH2SeH 42 )17 16 11 )22
Se(SiH3)2 )666 )635 )657 )656 )700
SeF4 1,083 1,174 922 966 1,175
SeF6 631 (g), 610 (l) 714 551 577 727
SeOF2 1,378 1,281 1,402 1,464 1,365
SeO4

2) 1,001±1,051 1034
(CH3)2C @ Se 2,131e 2,315 1,893 1,943 2,200
Se @ C @ O )447 )607 )368 )364 )532 )468
Se @ C @ Se 243(g), 331(l), 299(l) 222 402 446 121 281

605 577 559 589 598

Cyclic Se2�2 2,434f 2,159f 2,657f 1,894f

Se2�4 1,923±1,958 1,834 3,821 154

a Ref. [118]
b Ref. [44]. The non-relativistic calculations have been carried out with a 2p frozen core on Se, and a 1s frozen core on O, C, N, and F
c Refs. [119, 120]
d Ref. [121]
e Experimental result for tBu2C @ Se
f Averaged over the distinct 77Se sites
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tracted and stabilized, while d and f orbitals are more
e�ectively screened from the nuclear charge, and are
expanded and destabilized as a consequence [68]. These
relativistic changes are re¯ected in the shieldings and the
chemical shifts, primarily through the change in orbital
energy di�erences: the strength of the magnetic interac-
tion between di�erent MOs is inversely proportional to
their orbital energy di�erences [21, 22]. Third, spin-orbit
interactions in¯uence shieldings and chemical shifts
[128]. Kaupp et al. [71] have presented a simple but
general qualitative picture of the mechanism involved.
The spin-orbit operators induce spin polarization in the
system. This induced spin density interacts with the
nuclear magnetic moment of the NMR-active nucleus,
by means of a Fermi-contact mechanism ± the same
Fermi-contact term that is responsible for a large part of
nuclear spin-spin coupling e�ects [87, 88].

PyykkoÈ [68] pointed out that the relativistic shielding
tensor can be calculated either by third-order perturba-
tion theory, or, similar to the non-relativistic case, Eqs.
(7) to (12), by second-order perturbation theory, but
then based on the relativistic MOs. Schreckenbach and
Ziegler have followed the latter avenue. They have ac-
counted for scalar relativistic e�ects, i.e., the ®rst two
relativistic e�ects, by using the so-called Pauli-Hamil-
tonian [72, 84]. In DFT, this requires inclusion in the KS
equations (Eq. 2) of the mass-velocity operator,

hMV � ÿp4 8c2
ÿ �

; �13�
and the Darwin operator,

hDar � 1=8c2
ÿ �r2VKS : �14�

To go beyond the scalar relativistic approach, one has to
include Fermi-contact and spin-orbit operators as well
[129]. The operators in Eqs. (13) and (14), possibly along
with spin-orbit operators, are the foundation of the
quasi-relativistic (QR) method of Snijders et al. [89±92],
and they are also the basis for relativistic shielding
calculations [24]. Details of the QR-NMR method have
been given elsewhere [24, 25]. The QR method as
outlined so far is not the only way to include relativistic
e�ects in quantum chemistry [68]. We would like to
mention one other approach, the use of relativistic ECPs
[116, 117], still the most common relativistic method for
structural chemistry and related problems. The use of
ECPs for NMR calculations has been pioneered by

Kaupp et al. [35, 36]. As mentioned in Sect. 4, ECPs
have, by construction, the wrong asymptotic behavior
near the nucleus, making them un®t for NMR calcula-
tions at that center. ECPs are still useful for calculating
the NMR at light, neighboring nuclei that can be treated
without ECPs, and the results are comparable to
calculated shieldings from the QR approach [24, 43].

Results of 17O calculations in transition-metal-oxo
complexes MO4

n) are summarized in Fig. 1 [24]. The
agreement between theory and experimental data is
good, although solvation shifts are expected to be im-
portant. The same systems have been studied by Kaupp
et al. [35, 43] using their ECP-based DFT-IGLO scheme,
and the two DFT methods agree to a reasonable degree
[24, 43]. We note in passing that the method for local-
ization of the MOs (which is not unique) can have a
tremendous and unexpected in¯uence on the calculated
shieldings [43] ± a problem that is inherent to the IGLO
method but does not occur in the GIAO approach.
Other applications of the QR-DFT-GIAO method
include the proton NMR in transition-metal complexes
[45], the 13C, 17O, and metal NMR of carbonyl com-
plexes M(CO)n [24, 46], and 31P chemical shifts in
transition metal carbonyls [48]. In these studies, it has
been possible to explain observed trends in the chemical
shift based on the calculated electronic structure. The
scalar relativistic DFT-GIAO method has also been
applied to the NMR of heavy elements. An extensive
investigation of 125Te chemical shifts has been per-
formed [47], in continuation of the earlier 77Se NMR
calculations [44] (Sect. 4). An experimental absolute
shielding scale exists for the 125Te nucleus [122] but it is
plagued by the same problem as the 77Se scale, namely,
an estimated value for the relativistic contraction of the
core density. Ruiz-Morales et al. [47] proposed correct-
ing the experimental absolute shielding scale using more
accurate values for the NMR of an isolated Te atom, in
complete analogy to the discussion in Sect. 4. Calculated
125Te chemical shifts are summarized and compared to
experimental data in Figs. 2±4. A detailed discussion of
this data has been given elsewhere [47]. However, we
would like to point out that DFT performs very well,
with no exception, for the complete ®eld of 125Te NMR.
All this is achieved in a remarkably e�ective way, as
illustrated by the size of some molecules. (The calcula-
tions have been performed at various workstations, i.e.,
without extraordinary computational resources.)

Fig. 1. Calculated and experi-
mental 17O NMR shieldings in
transition-metal-oxo complexes
MO4

n), M � Cr, Mo, W
�n � 2�; Mn, Tc, Re �n � 1�;
Ru, Os �n � 0� [24]. The agree-
ment between theory and ex-
periment is satisfactory;
remaining di�erences, for the 3d
complexes in particular, have
been attributed [35] to short-
comings in the presently used
exchange-correlation (XC)
functionals. We note that rela-
tivity is crucial for a proper
description of the 4d and espe-
cially 5d complexes
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At the end of this section, we have to mention cer-
tain shortcomings of the present QR approach. They
are related to fundamental problems of the Pauli-
Hamiltonian. The most severe problem seems to be
that the mass-velocity operator of Eq. (14) has negative
eigenvalues [130], which may lead to a variational col-
lapse, i.e., to exceedingly large negative energies. This
and related problems are circumvented in the QR ap-
proach by using the frozen-core approximation, thus
treating only valence electrons variationally. The varia-
tional collapse is further avoided with a proper choice of
valence basis functions, cf. the discussion by van Lenthe
[95]. One such basis set requirement is that one must not

use more than a single f core-type basis, which certainly
in¯uences the accuracy of calculated shieldings. These
and other restrictions of the method have been discussed
in detail [24]. None of them was found to prohibit
quantitative agreement with experimental data.

6 ESR results

We will, in this section, leave the NMR shielding and
discuss the ESR g-tensor. While the NMR shielding has
seen tremendous theoretical activity recently, we have
tried to discuss some of it in Sects. 3±5, nothing
comparable has happened for the g-tensor yet.

ESR is based on the electronic Zeeman e�ect which
is, for a free electron, described by the electron-spin
Zeeman operator [75, 84]:

hZ � ge

2c
~S �~B : �15�

In molecular systems, one can employ similar expres-
sions, using an e�ective Zeeman interaction (e.g., for one
unpaired electron) [131]:

heffZ �
1

2c
~~S � ~~g �~B : �16�

Equation (16) de®nes ~~g, the g-tensor, and ~~S is an
e�ective spin operator. The e�ects of the molecular
environment will be contained in the g-shift, Dg, that is
de®ned as the deviation of the molecular g-value from
the free electron value, ge=2.002319 [75]:

~~g � ge
~~1� D~~g : �17�

Note that both ~~g and D~~g are second-rank tensors.
Further,

~~1 is the unit tensor, and Dg is the isotropic
average of D~~g. According to Eqs. (15) and (16), only
such operators contribute to D~~g that are either linear in
the electronic spin, resulting in paramagnetic contribu-
tions (analogous to the paramagnetic NMR shielding of

Fig. 2. Calculated and experi-
mental 125Te chemical shifts of
organic tellurium compounds
[47]. The average deviation be-
tween theory and experiment is
235 ppm. The calculated chem-
ical shifts span a range of
3000 ppm

Fig. 3. Calculated and experimental 125Te chemical shifts of
inorganic tellurium compounds [47]. The average deviation between
theory and experiment is 160 ppm. The calculated chemical shifts
span a range of 3400 ppm, thus covering almost the entire known
shift range for the 125Te nucleus
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Eq. 9), or bilinear in the spin and magnetic ®eld, giving
diamagnetic contributions (cf. Eq. 8). Paramagnetic
operators include the electron-nuclear spin-orbit opera-
tor, the electron-electron spin-orbit operator as well as
the spin-other-orbit operator [75, 84]. Diamagnetic
operators comprise a kinetic energy correction to the
Zeeman operator of Eq. (15) as well as the diamagnetic
contributions to the spin-orbit and spin-other-orbit
operators; they are also called ``gauge correction terms''
in the literature [75].

First-principle DFT calculations of ESR g-tensor
have been presented by Schreckenbach and Ziegler [25,
80], who recognized that the g-tensor can be formulated
in almost complete analogy to the NMR shielding. That
should not be too surprising from a theoretical point of
view since, in either case, it is a spin magnetic moment
that interacts with the external magnetic ®eld, a nuclear
spin for NMR, and an electronic spin for ESR. The
analogy is fully exploited [80], and the sophisticated
NMR apparatus can be used directly. We refer to the
literature for further details of the theory [75, 80, 84, 131,
132]. The DFT-GIAO-ESR method has been tested for a
variety of small radicals [80]. Some of the results are
displayed in Figs. 5 and 6. The ®gures illustrate that
theory is capable of reproducing experimental trends in
both the isotropic molecular g-value (Fig. 5) and in its
individual tensor components (Fig. 6). A detailed com-
parison with sophisticated ab initio methods [76±79] has
been made [80]. The conclusion was that DFT results are
in better agreement with experimental data than HF
calculations; the best results are obtained by correlated
multireference con®guration interaction (MRCI) calcu-
lations. Similar trends have been observed in NMR
shielding calculations [44] (Sect. 4). In Fig. 7, we dem-
onstrate some of the di�culties that still exist when at-
tempting to predict molecular g-values (g-shifts)
theoretically. Thus, experimental numbers were in many
cases obtained with the radical embedded in some host
crystal. This makes the comparison of calculated and

experimental numbers di�cult since the present calcu-
lations refer to the zero-pressure, zero-temperature limit
of a gas-phase experiment. Experimental values can, on
the other hand, vary considerably with the host crystal.

Fig. 4. Calculated and experi-
mental 125Te chemical shifts of
organometallic tellurium com-
pounds [47]. The average devi-
ation between theory and
experiment is 155 ppm. The
calculated chemical shifts span
a range of about 2400 ppm.
Note the size of molecules that
are accessible to DFT-NMR
calculations. While relativistic
e�ects are already important for
125Te in general [47], they are
crucial for complexes of 5d
elements like tungsten

Fig. 5. Isotropic g-shift, Dg, in CH4
+, NH3

+, and H2O
+ [80]

Fig. 6. Principal tensor components of the g-shift in symmetric AB2
radicals of ®rst-row compounds [80]. The axis system was chosen
such that the molecule lies in the yz plane, and that the z axis
coincides with the twofold symmetry axis
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We see from Fig. 7 that the experimental range is
enormous for our example NO3

2) [133]. To date, there is
one other ®rst-principle DFT implementation of the
ESR g-tensor available. The work of van Lenthe et al.
[132] is based on the ``zero-order regular approximation
for relativistic e�ects'' (ZORA). ZORA [93±95] is a
promising approach to relativistic quantum mechanics
that avoids many of the shortcomings of the Pauli-
Hamiltonian (cf. Sect. 5). We have collected results of
van Lenthe et al. [132] in Table 4, where they are
compared to our method [80]. Both methods give very
similar results in spin-restricted calculations. Further,
spin-unrestricted calculations turn out to be in better
agreement with experimental values for NO2 and HCO
while the spin-restricted approach is superior for TiF3.
Clearly, more data would be required for a compre-
hensive comparison of both methods.

Limitations of the DFT-ESR approach have been
discussed [80], and they shall be mentioned now. The
most severe limitation seems to be that the method
fails for compounds of heavier nuclei. For example, the
calculated parallel and orthogonal g-shift tensor
components in AlO are )142 and )222 ppm while the

corresponding experimental values are )900 and
)2600 ppm [80]. Schreckenbach and Ziegler attribute
this to the perturbational treatment of the spin-orbit
operator. Perturbation theory is expected to become
increasingly inappropriate for heavier nuclei: relativistic
e�ects are known to grow roughly with the square of the
atomic number [68], and spin-orbit coupling is certainly
a relativistic e�ect! Van Lenthe et al. [132] included the
spin-orbit operators in all orders, and their method
might be better suited for heavy elements.

7 Conclusion and future directions

We have tried to provide a feel for the progress that
DFT calculations of magnetic properties have seen over
the last few years. This development will, without doubt,
continue. We see a number of directions for the
development of DFT as applied to magnetic properties.

On the fundamental side, the discussion about ap-
propriate XC functionals will certainly continue (Sect.
3). This includes, in particular, the search for useful
approximations to the current dependency of the func-
tional, or the proof that those contributions can be
neglected! Method development and re®nement will
continue. We have discussed the success of approximate
relativistic methods (Sect. 5). We have, however, also
seen limitations that were either dictated by the use of
ECPs at the heavy nucleus (Kaupp et al. [35]) or that are
due to fundamental problems of the Pauli-Hamiltonian
(Schreckenbach and Ziegler [24]). The problems of the
latter approach can be tackled by replacing the, in a
sense outdated, Pauli operator with a better relativistic
method like the ZORA-Hamiltonian of van Lenthe [93±
95]. Another, unrelated ®eld where we foresee rapid
development is the new idea of linear scaling methods. It
will soon extend to second-order properties, including
the ones discussed in this overview [134]. This is partic-
ularly important as current methods scale with, say, the
third or fourth power of the system size. Linear scaling
methods will open completely new areas for research.
Further, medium e�ects of either solvents or solids
should be accounted for (cf. Sects. 4 and 6). A promising
®rst step in this direction has recently appeared in the
literature [135, 136]. Applications, in particular to metal
complexes, will undoubtedly continue. This is an area
where theory can, quite successfully, guide the experi-

Fig. 7. Experimental g-shifts of the NO3
2) radical in di�erent host

crystals. The molecule possesses a threefold symmetry axis, and the
principal tensor components of the g-shift correspond to coordi-
nate axes that are parallel (Dgjj) and orthogonal (Dg^) to the
symmetry axis. The ®gure illustrates the tremendous in¯uence of
the host matrix which can not yet be modeled by the current
theoretical models

Table 4. Calculated and experimental isotropic g-shifts Dg for a few radicals (ppm). All numbers cited from Ref. [132]. Note that
experimental numbers are generally given with two signi®cant digits less

Molecule= Pauli operator ZORA operator Experiment
Component

spin-unrestricted spin-restricted
(spin-restricted)

NO2 Dxx 4200 5000 5000 3900
Dyy )13800 )16400 )16000 )11300
Dzz )800 )600 )600 )300

HCO Dxx 2700 3200 3300 1400
Dyy )300 )100 )200 0
Dzz )9700 )12400 )12300 )7500

TiF3 Dxx = Dyy )42800 )73300 )79700 )111300 )121500 )123700
Dzz )1700 100 )1000 )11100 )11100 )3700

80



ment: e.g., the chemical shift range of metallic nuclei is
generally large, often several thousand ppm, and it is a
very cumbersome experimental task to scan this whole
range for a chemical-shift signal.

The theoretical determination of ESR g-tensors (Sect.
6) has not yet seen the same amount of development as
the NMR chemical shift. Thus, a lot remains to be done,
including further testing of existing DFT methods, and
their expansion to include the whole periodic system. No
less important will be an extension to systems with an
e�ective spin di�erent from 1/2 or with degenerate,
partially ®lled MOs; both are common situations in
transition metal complexes and elsewhere. Practical ap-
plications will certainly appear, e.g., aiming to under-
stand how the electronic structure manifests itself in the
g-tensor.
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